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Feynman rules for non-equilibrium field theory 

Ian D bwriet 
Depanment of Physia, The Univenily, Leeds U 2  9 q  UK 

Received 6 July 1992 

AbslmcL Within the closed-time-path formalism, a set of leal- and imaginaly-time 
propagators is obtained, which are suitable for the penurbative evaluation of Green 
functions in non-equilibrium slates of a scalar field theoly. A generalized renormalization 
procedure, described in earlier works, allows for the partial resummalion of absorptive 
paM of b p  diagrams, 50 that finite quasipanide lifetimes ale  incorporaled in the 
unperturbed propagaton. In this way, low-order calculations are made to reflect the 
time evolution of the non-equilibrium state, which is not mrrectly described @ standard 
penurbation rheoly. 

1. Introduction 

It is often important to know how the state of a physical system described by a 
quantum field theory changes in response to a changing environment. In particular, 
when the system undergoes a phase transition, large departures from thermal 
equilibrium may be expected, and special methods are required to describe the 
dynamics of such events. The situations we have particularly in view are the phase 
transitions which may have occurred in the early, rapidly expanding universe, with 
profound cosmological consequences (see, for example, the works cited in [l]). 
However, the techniques needed to deal satisfactorily with this problem should be 
much more generally applicable. 

As is well known, systems which remain in thermal equilibrium can be described 
by the imaginary-time formalism 121, which exploits the formal analogy between 
the statistical density operator p = exp(-p’H) and the time evolution operator 
exp(-iH1). Real-time information can, in principle, be obtained by analytic 
continuation of the Green functions to real times, although this continuation is not 
always straightforward [3]. For non-equilibrium states, and more particularly for 
systems with time-dependent Hamiltonians, it is essential to formulate the theory 
in real time. The theoretical framework for doing this, known as the closed-time- 
path formalism, was first studied by Schwinger and Keldysh [4] and has since been 
developed by many others. This formalism is reviewed in [5]. 

In this paper, we are concerned with systems whose Hamiltonians depend explicitly 
on time, but whose state at an initial time, say 1 = 0, is assumed to be one 
of thermal equilibrium. For scalar field theories of this type, an elegant path- 
integral version of the closed-time-path formalism was described several years ago 
hy Semenoff and Webs [6]. Physically the assumption of an initial equilibrium state 
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sits uneasily with a timedependent Hamiltonian, but it may be quite reasonable 
under appropriate circumstances. Far example, the spectrum of black-body radiation 
in an expanding universe is well known to remain thermal, but with a temperature 
inversely proportional to the scale factor. Mathematically, this assumption is extremely 
advantageous, since it leads to a cleanly defined problem in field theory. Once this 
problem is sufficiently well understood, it may well be possible to consider more 
general initial states. Indeed, steps in this direction have been taken by Calzetta and 
Hu [I in the context of a model with a time-independent Hamiltonian. 

In the formalism of Semenoff and Weiss, each quantum field 9 is represented 
by a set of three path-integration variables {dl, d2, d3}.  They inhabit the three 
segments of a contour in the complex time plane which runs from t = 0 along the 
real axis to a final time T, returns along the real axis to t = 0 and finally descends 
to 1 = -ipu, where flu is the inverse of the initial temperature. Thus, for example, a 
Heisenberg-picture operator A ( t )  which is represented in the Schrodin_eer picture by 
A,  is given by A(1) = U - ' ( t ) A s U ( f ) ,  where U ( t )  is the time-evolution operator. 
Its expectation value is 

( 4 1 ) )  = Tr[~U- ' ( t )AsO(t ) l  (1.1) 
and the three segments of the contour arise from the path-integral representations of 
the operators U ( t ) ,  U - ' ( t )  and p. More generally, a generating functional for Green 
functions with arbitrary real-time ordering and for imaginary-time Green functions 
an be constructed by including independent source terms in these three operators. 

Semenoff and Weiss derived Feynman rules for the perturbative evaluation of the 
Green functions, but these rules present an awkward problem in practice. Organized 
in the obvious way, perturbation theory is an expansion about a free-particle theory. 
In this context, it makes approximate sense to refer to single-quasiparticle modes of 
excitation, and the unperturbed propagators involve the occupation numbers of these 
modes. These occupation numbers ought to evolve with time, to reflect the changing 
state of the system. However, the dissipative relaxation processes which give rise to 
this evolution necessarily involve scattering, which is absent from the unperturbed 
theory. Thus, the unperturbed propagators always involve the occupation numbers 
appropriate to the initial time. Since only low-order calculations are tractable in 
practice, one cannot expect to obtain expectation values, say, which evolve with time 
in the cnrrect manner. 

In two earlier papers [8,9], we showed how perturbation theory may be 
reorganized so as to remedy this situation. The idea, reviewed in section 2, is to effect 
an approximate resummation of the absorptive parts of higher-order contributions to 
the full propagators, incorporating these into modified versions of the unperturbed 
propagators; One then finds that the quasipanic!e modes of the unperturbed theory 
have finite decay widths, and the associated relaxation times characterize the evolution 
of their occupation numbers. In the spirit of standard renormalization theory, this 
can be achieved by adding a suitable counterterm to the unperturbed part of the 
action and subtracting it from the interaction part. By choosing the counterterm in 
such a way that the new interaction vertex cancels (as nearly as possible) the higher- 
order contributions to the self-energy, one optimizes the unperturbed propagator as 
an approximation to the full propagator. When the time evolution is sufficiently 
slow, and the decay widths sufficiently small, we found that the occupation numbers 
approximately obey a kinetic equation of the Boltzmann type-a result which in some 
measure confirms the efficacy of our approach to the problem. 
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Our attention in these papers was restricted to the 2 x 2 matrix of real-time 
propagators. 'Ib check that the technique is fully consistent, it is necessaly to show 
that this matrix can be embedded in the 3 x 3 matrix of real- and imaginary-time 
propagators required by the complete formalism, and that is the purpose of the 
present work It was pointed out in [S,9] that in practice, only the real-time 
propagators are needed for low-order calculations, provided that one inserts the 
initial occupation numbers by hand. It is nevertheless desirable to assure ourselves 
that the whole formalism can be consistently constructed. Moreover, when the 
theory is extended to incorporate gauge fields (a task which will be discussed in a 
separate publication) the propagators have a somewhat mmplicated, gaugedependent 
structure. Only by carefully constructing the full 3 x 3 propagator matrix, as was done 
by Kobes et al [lo] for the case of thermal equilibrium, can the correct results be 
obtained. 

It turns out that the strategy needed to complete the construction of the 
propagator matrix satisfactorily is a slightly curious one (or so it seems to the author), 
and for this reason we present our analysis in some detail. The theory of the real-time 
propagators is reviewed in section 2 In section 3, we derive the boundary conditions 
satisfied by the nine real- and imaginary-time propagators and obtain expressions for 
these. Though formally correct, these propagators are unsatisfactory, since they do 
not properly reflect the initial equilibrium state. We explain why this comes about and 
describe the remedy. Finally, our results are summarized and discussed in section 4. 

2. Real-time propagators 

We study the theory of a real scalar field 4( z , t ) ,  defined by the action 

which, with a suitable choice of the time-dependent mass m(t) ,  would be appropriate 
for a Robertson-Walker universe. Using standard path-integral methods [6,11], one 
finds that the generating functional for real- and imaginaly-time Green functions is 
given by 

z ( J l ,  J 2 ,  J3) = / V 1 % W 3 e x p  [ i9(41 ,42 ,43)  t i / d t d 3 z J . 4 ]  (2.2) 

and the time integration means 

(2.4) 
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The full propagators are given by 

where I denotes ( z , t )  for a , b  = 1,2 or ( 2 , ~ )  for a ,b  = 3. In terms of the original 
quantum field, the real-time propagators ( a ,  b = 1,2) are the expectation values 

where T and denote time- and anti-time-ordering respectively. 
We showed in [9] that these propagators can be expressed in the form 

(2.8) 

so that they are all determined by a single complex function H ( z ;  z’). Since we are 
dealing with a spatially homogeneous system, the spatial argumentl. appear only in 
the. combination (z - z’)? and it is convenient to take a Fourier transform on this 
variable: 

(2.9) 
d3 k 

~ ( z ;  z’) = J o“ exp[* . ( z  - z ’ ) ] ~ , ( t , t ’ ) .  

Perturbation theory requires a lowest-order approximation to the propagators, 
whose real-time components we denote by g k ( t : t ’ ) :  and these can be constructed 
from a function h k ( t , t ‘ )  as in (2.8). They are determined in the usual way as 
solutions of an equation of the form 

c_ 

D , ( t , a / a t ) g , ( t , t ‘ )  = g, ( t , t ‘ )D, ( t ’ ,a /a t ’ )  = -i6(t- t ’ ) i  (2.10) 

where D, is a differential operator associated with the unperturbed part of the action 
(2.3). If we were to choose this unperturbed action simply by taking the quadratic 
part of (2.1) (and ignoring, for now, the imaginary-time contribution SE(+3)), then 
this differential operator would be 

atz + k2 + mz(t)  0 
0 -az/at2 - k2 - mZ(t)  

However, in order to incorporate dissipative effects, it is helpful to choose a different 
unperturbed action, and thus obtain a different form for Dk. The idea is to optimize 
g as an approximation to C by adding to D, terms which mimic the effect of higher- 
order contributions to the self-energy. In order that it be possible to solve (2.10), 
we require V k  to be a local, second-order differential operator. We find [9] that 
the most general form of this operator consistent with the structure of the real-time 
self-energy matrix is 
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where a,(t), P k ( t )  and ~ ~ ( 1 )  are real functions, even in k, which are yet to be 
determined. 

This differential operator arises from the action 

sU(41942,63) = fJdtJ$ [ ~ 1 ~ ~ 1 - ~ - ~ 2 L ~ 2 - k - P k ( ~ l S ~ I - k - ~ 2 k ~ 2 - I . )  

- Y d 4 I L 4 2 - k  - 4 Z k 4 1 - b )  + k ( 4 1 ,  - 4 2 L ) ( 4 1 - k  - 42-L) l  

(2  13) +... 

where the ellipsis represents the 4, contribution which does not yet concern us. 
The interaction part of the action is 9 - so, and it contains a counterterm vertex 
involving a,, Pk and 7,. Thus, these functions may be chosen in such a way that 
the munterterm vertex cancels some part of the higher-order contributions to the 
self-energy. In this way, the higherader contributions are partially resummed, to 
appear in the unperturbed propagators g. 

It is perhaps worth emphasizing that the functions a,, pk and 7, do not represent 
an arbitrary modification of our original theory; they merely represent an arbitrary 
choice of the lowest-order theory about which we perturb and this choice can be 
made so as to optimize our low-order approximations. It will be seen, however, that 
the action 9, in (2.13) has a structure different from that of (2.3), which consists of 
a sum of terms, each depending on only one of the fields &, d2 and +3. Since the 
latter structure arises automatically in the path-integral representation of a quantity 
such as (l.l), our bwest-order theory is not in itself a true quantum field theory. 
Indeed, the dissipative behaviour we are trying to describe arises mathematically only 
when the theory is treated in some approximate manner, for example, by truncating 
the perturbation series at some b i t e  order. This point is discussed in some detail by 
Calzetta and Hu [I. On the other hand, the unitarity of the time-evolution operator 
U ( 1 )  and the Hermiticity of the density operator p are reflected in a symmetry of 9, 
which reads 

s' (41 9 42, 43) = -$(42, 417 $3) (2.14) 

where 

'$dz, 7) = 43(z,P - T )  (215) 
and we see that the unperturbed action (2.13) is consistent with this symmetry. (Note 
that, since +,,(z,t) is real, & ( 1 )  = 40-k( t ) . )  

Given the differential operator (2.12), we can formally solve (2.10) for the real- 
time propagators g. The function h, from which they are constructed in the form 
(2.8) is given, in terms of two auxiliary functions n,(t) and Nk(l)  by 191 

hk( t , t ' )  = [nk(1)CZ2L(t')]-1'2exp ( - ; yk ( t ' , t ) )  

x { [ 1 +  N,(l')]exp(-in,(l',l))+ [ - I +  N;(t')]exp(in,(l',t))} 

(216) 

where 
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and nk(t',t) is similarly defined. 
solution of the equation 

The timedependent frequency nk( t )  is any 

while N,(t) satisfies 

(2.18) 

In view of the 0 functions appearing in (2.8), the factor exp[-irb(t',t)] always 
represents a decaying mode, so long as y k ( t )  is positive. 

From now on, we simplify our notation by suppressing the wavevector subscripts. 
The solution to (2.18) may he written as 

where NI and N2 are (k-dependent) constants of integration, and N, is real. 
Semenoff and Weiss [6] in effect determine these constants (for the case a k ( t )  = 
-yk(t )  = 0) by considering the whole (3 x 3) propagator matrix and applying 

contour. These boundary conditions will he discussed in detail in the following 
section. At this point, we merely record the values which are obtained when 
our dissipative counterterm is omitted; that is to say, when a( t )  = y(t) = 0 
and p( t )  = mZ( t )  + I C z .  Assuming that the imaginary-time contribution to 9, 
(equation (2.13)) is just the quadratic part of (2.4), and taking a solution to (217) 
which satisfies n(t = 0) = w E +J(m2(0)  + k z ) ,  we obtain 

s.itab!e h ~ E d a ! y  mnditian3 at !!le endpints of the three EgE.ent. of *e time 

and 

(2.20) 

(2.21) 

We observe that the real-time propagators involve the mode functions 

f*(t) = (2n(t))-"2exp[*in(~,t)] (2.22) 

which correctly incorporate the time-dependent frequency, and the occupation 
numbers 

(2.23) 

which, incorrectly, are fixed at their initial values. In the case of a system which 
remains in thermal equilibrium, with a( t )  = 0, we have just Nl = 2n + 1 and 
N2 = 0. 

For the purpose of carrying out low-order calculations in the non-equilibrium 
theory, involving only the real-time propagators, it is probably sufficient to insert 
suitable values of NI and N2 into (2.19) by hand. lb derive these constants correctly, 
however, it is necessary to construct the complete propagator matrix. Tbat is the 
central task of this paper and is addressed in the following section. 

1 
n ( t )  = [exp(p,w) - 11- = i [coth (;@,U) - 11 
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3. Imaginary- and mixed-time propagators 

From the derivation of the path integral (2.2), it is apparent that the full  propagators 
G(z; z’) satisfy the continuity conditions 

(a = 1,2,3). 
operators, it is also straightfomrd to derive the conditions [6] 

Using the Heisenberg equations of motion for the original field 

(a = 1,2,3). Semenoff and Weiss [6] assumed that these boundary conditions would 
also be satisfied by their unperturbed propagators, and this is indeed true. However, 
the conditions (3.2) are not appropriate for our dissipative propagators, and we now 
derive the correct version of these conditions. 

In order to do perturbation theory, we wish to express the generating functional 
for unperturbed Green functions 

in the form 

Supplementing the real-time action (2.13) with the quadratic part of (2.4), we have 

In the usual fashion, we shift the integration variables according to 

(3.5) 
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and seek to eliminate the terms linear in J,, by imposing a condition analogous to 
(2.10), namely 

t- q t ,a /a t )g ( t ,  t ’ )  = g ( t , t ’ ) q t ’ , a / a t l )  
= (-ih(;- 1’) 0 0 

0 ) (3.7) 

1. 
-i6( t - 1‘ )  

0 -6(r - 7‘) 

where the differential operator is now 

az/at2 + p( t )  - i a ( t )  -,(t)a/at+ t + ( t )  + i a  0 
D = -r(t)a/at - f + ( t )  + ia(t)  -az/at2 - ~ ( t )  - ia ( t )  0 

0 0 aZ/a+z - w z  

(3.8) 

( 
In implementing this procedure, it is necessaly to integrate by parts, and boundary 
conditions on the propagators arise from the requirement that the boundaly terms 
vanish. ‘hking account of the continuity conditions (3.1) and the corresponding 
conditions on the fields (+,(T) = &(T),  &(O) = &(O) and +,(O) = +3(pu)), we 
obtain 

(3.9) 

The first of these conditions is automatically satisfied by the real-time propagators 
described in the previous section. Solving (3.7) for the remaining propagators and 
applying the conditions (3.1) and (3.9), we find 

g33(TrT’) = h-(T)h+(T‘) f ) (T- 7’) + h+(T)h-(T’)@(T’-  T )  

+ - I)-’ [ h - ( ~ ) h + ( ~ ’ )  + ~ + ( T w ( T ’ ) ]  (3.10) 

where 

h*(r) = ( 2 ~ ) - ’ / ~ e * ~ ~  (3.11) 

and 

g,3(t,r) = g,(t,7) = g31(7,t) = 93Z(T?t)  

= A l f ( W - ( r )  + Azf( t )h+(T)  + A 3 f ’ ( t ) h - ( ~ )  + A ~ f * ( t ) h + ( ~ )  
(3.12) 

with 

f ( t )  = (2n ( t ) ) - ”2exp[ -~ r (0 , t )  -iQ(o,t)] (3.13) 
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the Ai being constants of integration. We note that the imaginary-time propagator 
(3.10) iS identical with that found in the imaginary-time formalism which applies 
to states of exact thermal equilibrium. Also, the equality of the four mixed-time 
propagators in (3.12) is required for causality, in the sense that a Green function 
G(fl, ... ,t,,) is independent of the state of the system at times greater than all of 
the arguments t , ,  ..., t,,. 

The values of the constants of integration are conveniently expressed in terms of 
the quantities 

(3.14) 

(3.15) 

Nu z N(0)  = N ,  + N2 

Nu E N ( 0 )  = -y&" -(yo + 2iQ,)N2 
where yo I y(0 )  and $2, 3 $2(0). We find 

Nu = - i [U' - (nu -I- ig) (nu + i& - iyu)] coth (;&U) 
W 

(3.16) 

(3.17) 

with a, 3 h(0). 
Although these results (along with the corresponding values of the A i ,  which we 

do not record here) constitute a formally correct solution of our problem, they are 
unsatisfactory, because they do not correctly reflect the initial state of equilibrium. 
Consider, for simplicity, the model with a time-independent mass, which remains in 
equiIibrium. The decay constants y are non-zero, but we would expect them, along 
with S? and N to be time-independent. According to (2.18), we should then have 

(3.18) 

and N = 0, and no choice of the real quantities a and il will make (3.16) and (3.17) 
consistent with this expectation. lb see what has gone wong, let us temporarily ignore 
the dissipative counterterm. Our system with time-independent mass will begin and 
remain in equilibrium so long as the Hamiltonian which appears in the initial density 
matrix is the same as that which governs the time evolution. Suppose that this is 
so, but that we foolishly attempt to do perturbation theory by choosing different 
unperturbed Hamiltonians for the density matrix and the time evolution. Although 
the whole theory remains in equilibrium, our unperturbed theory obviously will not 
do so. 

Our present difiicuity is of the Same kind, though not identicai, since the 
dissipative counterterm cannot be represented in terms of a Hamiltonian. lb 
resolve it, we must add to the imaginary-time part of 9, a further counterterm 
which makes the initial equilibrium state of the unperturbed theory consistent with 
its subsequent time evolution. Naturally, this counterterm will also be subtracted 
from the interaction, so that the whole theory remains unchanged. The only local 
counterterm which respects the symmetry (2.14) (or, equivalently, the Hermiticity of 
the density operator) iS of the form 

(3.19) 
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where 6, is real. Since is homogeneous in imaginary time, we take 6, to be 
independent of T ,  in which case the integrand in (3.19) is a total derivative. Tiking 
account of the continuity of the fields and suppressing once again the wavevector 
arguments and integration, we can write 

(3.20) 

We see that the new counterterm can be regarded as modifying the differential 
operator (3.8) with 6-function terms in several equivalent ways. However, it is 
most straightforward to regard it as leaving 'D unchanged but modifying the last 
hvo boundary conditions in (3.9), which now become 

With these new boundary conditions, the constants of integration (3.14) and (3.15) 
become 

W 
(3.22) 

No = - i [w2 - (0, + i n 0  - i c )  (aU + i- 
- iy, - 

W 2a0 2 2% 

The functions a, p and y will now, as before, be determined by a renormalization 
prescription which partially resums loop corrections to the lowest-order propagators. 
However, 6 will be chosen to ensure that the initial equilibrium state is properly 
described. From now on, we m u m e  that the solution of (2.17) for n(t) may be 
chosen so that fiu = 0. We see from (3.22) that Nu will have the correct phase, as in 
(3.18), if we choose 

6 = -yu (3.24) 

and from (3.23) that Nu will then vanish if we impose the initial condition 

on (2.17). 
In order to recover (3.18), we would now have to assume that the initial value of 

a ( t )  is 

au = yuwcoth (iPuw) = y"w(2nu + 1) (3.26) 

where nu are the initial occupation numbers (cf equation (3.11) of [9]). This is 
a constraint on our choice of the renormalization prescription used to determine 
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a(i). It iS satisfied by the prescription adopted in [9], at least at the level of 
approximation used there. If this constraint is imposed, then we see from (218) that 
N = 0 at 1 = 0. In the theory with time-independent mass, this will automatically 
ensure that N remains mnstant at all times, as it should. In a theory without 
time-translation invariance, the assumption of an instantaneous initial equilibrium iS 
obviously somewhat artificial, and one might not wish to insist on the conditions 
(3.24H3.26). It is nevertheless important to know that the formalism can be made 
to describe the case of thermal equilibrium correctly. We record that when these 
conditions are insisted on, the remaining constants of integration in (3.12) are given 
bY 

(3.27) 

4. Summary and discussion 

In this paper we have mmpleted the derivation of a set of propagators suitable 
for evaluating perturbatively the Green functions of a field theory which is driven 
away from thcrmal equilibrium by time-dependent terms in its Hamiltonian. The 
essential strategy is to use a generalized renormalization procedure to effect a partial 
resummation of the absorptive parts of Imp diagrams so that quasiparticle occupation 
numbers in the unperturbed propagators evolve with finite relaxation times. We 
worked in the specific mntext of a scalar field theory with time-dependent mass, which 
is assumed to be in thermal equilibrium at some initial time, and further assumed the 
state to be spatially homogeneous. We summarize here our results for the (3  x 3) 
matrix of propagators gob in the closed-time-path formalism. For (a, b = 1,2) the 
propagators have two real-time arguments and, after Fourier transformation on their 
spatial arguments, depend on a wavevector, which we suppress. They may be written 
as 

where 

h(t , t ' )  = + [ 0 ( 1 ) ~ 2 ( 1 1 ) 1 - " '  exp (+(t',t)) 

x { [ I +  ~ ( t ' ) ] e x p ( - i ~ ~ ( t ' , t ) )  t [ - I+ N*(t')]exp(in(1',1))} 

( 4 4  

and the functions 7 ( i ' , t )  and Q ( t ' , t )  were defined below (2.16) in terms of time- 
dependent frequencies n(t) and decay widths ~ ( 2 ) .  Time-dependent occupation 
numbers are contained in the functions N ( 1 )  displayed in (2.19) where, provided the 
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conditions (3.24) and (3.25) together with n(0) = 0 are imposed, the constants of 
. integration are given by 

with 

(4.3) 

The remaining propagators are given by (3.10)-(3.13) with the constants of integration 
(3.27) and (3.28). 

It will be observed that the time-dependent occupation numbers are those 
associated with the earlier of the two time arguments in the propagator, so that 
no account k taken of the evolution of the state between the two times. This 
may not be too important, since the propagators decay with the separation of their 
time arguments, on the Same time scale as that which governs the evolution of the 
occupation numbers. The situation is nevertheless not entirely satisfactory. It arises 
from our insistence on the use of local counterterms. In principle, one might try to 
introduce non-local munterterms. The differential equation (3.7) would then become 
an integrodifferential equation, with coefficients a( t ) ,  p(1) and y(l)  which remain to 
be determined from renormalization conditions. It seems to us that such a formalism 
would be. quite intractable. 

The extension of our formalism to spinor and gauge fields, and to more general 
timedependent Hamiltonians, should be fairly straightfonuard, though possibly 
involving long-winded algebra. It may also be possible to consider more general 
initial states [7]. In general, one might expect non-equilibrium states to be spatially 
inhomogeneous. If this inhomogeneity is sufficiently weak, it might be possible to treat 
it perturbatively, using the homogeneous situation considered here as a lowest-order 
approximation. However, a complete treatment is likely to be extremely complicated, 
as is indicated by the discussion of Calzetta et a1 [12], who consider only free fields. 
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